
Overload Control for Scaling 
WeChat Microservices

Authors - Hao Zhou, Ming Chen, Qian Lin, Yong Wang, Xiaobin She, Sifan Liu, Rui Gu, 
Beng Chin Ooi, Junfeng Yang

Presented by - Kirtan



Overview

1. What is WeChat?
2. Introduction.
3. Background.
4. Overload in WeChat.
5. DAGOR.
6. Evaluation.
7. Conclusion.

Slides Count 26



What is WeChat?



What is WeChat?



Introduction - Overload in Application.

1. Overload control aims to mitigate service irresponsiveness.
2. Limited Computing resources affordability.
3. Complex Microservice Architecture are difficult to manage for overload.

a. Microservices must be monitored.
b. Microservices should not handle overload independently.
c. Adapt to the service changes.



Introduction - DAGOR

Overload control scheme, called DAGOR, for a large-scale, account-oriented 
microservice architecture.

1. Service Agnostic.
2. Adaptive with respect to service changes.
3. Practical solution of overload control for an operational microservice system.



Background - Service Architecture



Background - Service Architecture

1. 3000+ services.
2. Over 1010 requests per day to Entry Service. (10 times of the daily average 

during the Chinese Lunar New Year)
3. 20,000+ machines.
4. 1000+ changes made in a day.



Background - Subsequent Overload



Background - Subsequent Overload

For random load shedding hampers the overall system performance.

If A service calls M service. (M sheds 50% load randomly)

Success rate of A for 1 request is 0.5C, where C is request count.

Success rate of two Subsequent request becomes 0.25C.

So the probability of successful service request reduces with more number 
of microservices involved in the subsequent request.



DAGOR Overload Control

1. Service Agnostic.
a. Applicable to all kinds of services.
b. Not rely on any service-specific information
c. Unaffected by improper configuration of service.

2. Independent but Collaborative.
a. Run on the granule of individual machine.
b. Collaboration between different machines.

3. Efficient and Fair.
a. Computational resources (i.e., CPU and I/O) wasted on the failed service tasks are minimized.



DAGOR - Overload Detection

1. Average waiting time of requests in the pending queue.
2. Request Processing time isn’t local.
3. High CPU utilization doesn’t always mean overload.

Window based monitoring system.

1. Refreshes every 2000 requests. (calculated 347222 requests per second, 173 
refreshes per second across entry services)

2. 500ms request timeout.
3. 20ms average threshold for overload.



DAGOR - Admission Control



DAGOR - Admission Control

1. Business-oriented Admission Control
a. Hashmap for business priorities (AID:Priority), Login, Money Transfer etc.
b. Priorities are recursively passed to subsequent services.
c. Rarely changes over time.

2. User-oriented Admission Control.
a. Provides more fine grained priority range if used along with Business Priority.
b. Avoids partial discarding of requests in Business Priority.
c. User Priority is dynamically generated.

3. Session-oriented Admission Control.
4. Adaptive Admission Control.

a. Finds the right (B, U) priority setting on the fly.
5. Collaborative Admission Control.

a. Piggyback updated admission control settings.
b. Do a local check before sending the request.



DAGOR - Admission Control



DAGOR - Adaptive Admission Control



DAGOR - Adaptive Admission Control



DAGOR - Adaptive Admission Control

α - 5% drop for overload.

β - 1% increase.



DAGOR - Workflow



Evaluation

1. Encryption service (Mi) and Messaging service (Ai).
2. In-house cluster. (over 3 machines for each service)
3. Each machine has Intel Xeon E5-2698 @ 2.3 GHz CPU and 64 GB DDR3 

memory.
4. 10 Gigabit Ethernet.



Evaluation - Two workloads



Evaluation - Comparing with other Overload mechanisms



Evaluation - QPS fixed at 1500



Evaluation - Subsequent overload



Conclusion

DAGOR works well with subsequent overload!



Thank You.


