
Taiji: Managing Global User 
Traffic for Large-Scale Internet 

Services at the Edge

David Chou, Tianyin Xu, Kaushik Veeraraghavan, Andrew Newell, 
Sonia Margulis, Lin Xiao, Pol Mauri Ruiz, Justin Meza, Kiryong Ha, 

Shruti Padmanabha, Kevin Cole, Dmitri Perelman

2019

Francis Rinaldi



Motivation
● Facebook used a static edge-to-datacenter 

traffic mapping.

● As Facebook became more popular, the traffic 

became more variant.









Motivation
Dynamic edge-to-datacenter traffic routing:

● Guards against Capacity Crunches

● Improves Product Heterogeneity

● Improves Hardware Heterogeneity

● Improves Fault Tolerance



Background
● Large Backbone Network

● Limiting Factor is Backend Capacity

● Static vs Dynamic Content

● Stateless vs Sticky Traffic







Taiji Runtime
● Generates routing table from policy and 

dynamic data every epoch (5 min)

● Contains a reader that reads, normalizes, and 

aggregates data



Policy
● Specifies constraints and objectives for the 

assignment solver

● Facebook’s most used policy is:

○ Balance Data Center Utilization

○ Optimize Network Latency



Assignment Solver
● Uses a local search algorithm

● Iterates the following:

○ Swaps a unit of traffic between two data centers

○ Updates model with the better data center

○ Done if no changes are made over all traffic

● Finding the local maximum

● Uses symmetry to reduce recalculation





Safety Guards
● Onloading Safety Guard (0.04)

○ Constant upper bound on the increase of 

utilization of a data center per epoch

● Traffic Fraction Safety Guard

○ Upper bound on the fraction of traffic sent to 

a data center



Safety Guards
● Minimum Shift Limit (~1%)

○ Minimum threshold for the percentage of 

traffic changes to cause an update 

● Dampening Factor (80%)

○ Dampens the change in traffic in order to 

prevent overshooting



Sensitivity Analysis
● Continually runs to tune the safety guard values

● Found:

○ Traffic shifts are more costly for stateful than 

stateless services

○ Traffic shifts for stateless services initially 

cause worse latency and throughput



Taiji Traffic Pipeline
● Takes the routing table from the Taiji Runtime

● Groups users into buckets via 

connection-aware-routing

● Generates routing entries that specify which 

buckets go to which data centers

● Sends routing entries to local Edge LBs

● Takes about 1 minute



Connection-Aware Routing
● Introduces locality in traffic routing

● Groups highly-connected users into buckets via 

classical balanced graph partitioning

○ Each bucket is roughly the same size

○ Maximizes connections within each bucket



Bucket Size Issue
● Trade-off for the bucket size:

○ Increasing yields more cache efficiency

○ Decreasing yields more routing accuracy

● Taiji wants a fine granularity of traffic

○ Each bucket represents ~0.01% of global traffic

○ This can separate large communities, resulting 

in losing traffic locality benefits.



Solution
● Combination of:

○ Offline User-to-Bucket Assignments 

○ Online Bucket-to-Datacenter Assignments

● Increases traffic locality for community 

connections from 55% to 75%



User-to-Bucket Assignment
● Partitions all users across a complete binary tree

● The root contains all users

● For each node, if its user size is not ~0.01%:

○ Perform a balanced bipartition of the node’s 

users between two children that minimizes 

edge cuts





User-to-Bucket Assignment
● Performed offline once a week

● Limits total user movement across buckets per 

week to 5% to limit rerouting

● In practice, <2% of users are moved per week

● Two types of connections are ignored:

○ User to Highly-Connected Entity

○ One-Time Interactions



Bucket-to-Datacenter Assignment
● Groups buckets that are part of same-sized 

subtrees into segments

○ Represented by the root of the subtree

● Strives to assign buckets in the same segment to 

the same datacenter

● Creates more traffic locality

● Wants to be stable: buckets are barely reassigned





Bucket-to-Datacenter Assignment
● A level L is picked

○ The segments will be the nodes on level L

○ There will be 2L segments

● Tradoff:

○ Smaller L increases traffic locality

○ Bigger L increases stability

● Empirically picked L to be 7









Home for Mappings
● Each Edge LB contains the bucket-to-datacenter 

mapping for their edge machine

● Each datacenter contains the user-to-bucket 

mapping.

● User has a cookie that adds the user’s bucket ID 

to that user’s requests



Fault Tolerance
● If a datacenter fails or its traffic is drained, Taiji 

excludes that datacenter from traffic balancing.

● Backend safety is the primary concern



2015

Static

2019

Taiji

































Lessons
● Customizing load balancing strategy is key to 

managing infrastructure utilization

● Build systems that keep pace with infrastructure 

evolution

● Keep debuggability in mind

● Build tools to simplify operations



Limitations
● Taiji might increase the latency for some users 

during peak load

● Taiji only considers edge-to-datacenter latency

● Taiji only controls the edge-to-datacenter 

routing




