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Motivation
● Facebook used a static edge-to-datacenter 

traffic mapping.

● As Facebook became more popular, the traffic 

became more variant.









Motivation
Dynamic edge-to-datacenter traffic routing:

● Guards against Capacity Crunches

● Improves Product Heterogeneity

● Improves Hardware Heterogeneity

● Improves Fault Tolerance



Background
● Large Backbone Network

● Limiting Factor is Backend Capacity

● Static vs Dynamic Content

● Stateless vs Sticky Traffic







Taiji Runtime
● Generates routing table from policy and 

dynamic data every epoch (5 min)

● Contains a reader that reads, normalizes, and 

aggregates data



Policy
● Specifies constraints and objectives for the 

assignment solver

● Facebook’s most used policy is:

○ Balance Data Center Utilization

○ Optimize Network Latency



Assignment Solver
● Uses a local search algorithm

● Iterates the following:

○ Swaps a unit of traffic between two data centers

○ Updates model with the better data center

○ Done if no changes are made over all traffic

● Finding the local maximum

● Uses symmetry to reduce recalculation





Safety Guards
● Onloading Safety Guard (0.04)

○ Constant upper bound on the increase of 

utilization of a data center per epoch

● Traffic Fraction Safety Guard

○ Upper bound on the fraction of traffic sent to 

a data center



Safety Guards
● Minimum Shift Limit (~1%)

○ Minimum threshold for the percentage of 

traffic changes to cause an update 

● Dampening Factor (80%)

○ Dampens the change in traffic in order to 

prevent overshooting



Sensitivity Analysis
● Continually runs to tune the safety guard values

● Found:

○ Traffic shifts are more costly for stateful than 

stateless services

○ Traffic shifts for stateless services initially 

cause worse latency and throughput



Taiji Traffic Pipeline
● Takes the routing table from the Taiji Runtime

● Groups users into buckets via 

connection-aware-routing

● Generates routing entries that specify which 

buckets go to which data centers

● Sends routing entries to local Edge LBs

● Takes about 1 minute



Connection-Aware Routing
● Introduces locality in traffic routing

● Groups highly-connected users into buckets via 

classical balanced graph partitioning

○ Each bucket is roughly the same size

○ Maximizes connections within each bucket



Bucket Size Issue
● Trade-off for the bucket size:

○ Increasing yields more cache efficiency

○ Decreasing yields more routing accuracy

● Taiji wants a fine granularity of traffic

○ Each bucket represents ~0.01% of global traffic

○ This can separate large communities, resulting 

in losing traffic locality benefits.



Solution
● Combination of:

○ Offline User-to-Bucket Assignments 

○ Online Bucket-to-Datacenter Assignments

● Increases traffic locality for community 

connections from 55% to 75%



User-to-Bucket Assignment
● Partitions all users across a complete binary tree

● The root contains all users

● For each node, if its user size is not ~0.01%:

○ Perform a balanced bipartition of the node’s 

users between two children that minimizes 

edge cuts





User-to-Bucket Assignment
● Performed offline once a week

● Limits total user movement across buckets per 

week to 5% to limit rerouting

● In practice, <2% of users are moved per week

● Two types of connections are ignored:

○ User to Highly-Connected Entity

○ One-Time Interactions



Bucket-to-Datacenter Assignment
● Groups buckets that are part of same-sized 

subtrees into segments

○ Represented by the root of the subtree

● Strives to assign buckets in the same segment to 

the same datacenter

● Creates more traffic locality

● Wants to be stable: buckets are barely reassigned





Bucket-to-Datacenter Assignment
● A level L is picked

○ The segments will be the nodes on level L

○ There will be 2L segments

● Tradoff:

○ Smaller L increases traffic locality

○ Bigger L increases stability

● Empirically picked L to be 7









Home for Mappings
● Each Edge LB contains the bucket-to-datacenter 

mapping for their edge machine

● Each datacenter contains the user-to-bucket 

mapping.

● User has a cookie that adds the user’s bucket ID 

to that user’s requests



Fault Tolerance
● If a datacenter fails or its traffic is drained, Taiji 

excludes that datacenter from traffic balancing.

● Backend safety is the primary concern
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Lessons
● Customizing load balancing strategy is key to 

managing infrastructure utilization

● Build systems that keep pace with infrastructure 

evolution

● Keep debuggability in mind

● Build tools to simplify operations



Limitations
● Taiji might increase the latency for some users 

during peak load

● Taiji only considers edge-to-datacenter latency

● Taiji only controls the edge-to-datacenter 

routing




