Q-VR: System-Level
Design for Future
Mobile Collaborative
Virtual Reality

CHENHAO XIE, XIE LI, YANG HU, HUWAN PENG,
MICHAEL TAYLOR, SHUAIWEN LEON SONG

Presentation by-Ayush Garg

°Introduction

*Current VR Systems and Their Limitations

Presentation ‘AR .
. * Software-level flexibility
OVe rview * Hardware support
*Evaluation

*Summary

Introduction

Min performance requirements
e end-to-end latency (i.e., Motion to-Photon latency or MTP) < 25 ms
o framerate>90Hz~ 11ms

Mobile VR designs cannot satisfy the realtime performance requirements due to:

e highly interactive nature of user’s actions
e complex environmental constraints during VR execution

High quality VR applications are designed on a tethered setup which significantly limits users’ mobility

Authors propose Q-VR, a novel dynamic collaborative rendering solution via software-hardware co-design for
enabling future low-latency high-quality mobile VR.

*Introduction
*Current VR Systems and Their Limitations

*Q-VR
* Software-level flexibility
* Hardware support

*Evaluation

*Summary

Modern VR System Components

VR-Runtime SDK ‘ Rendering Engine

Motion Information == Game Content Engine |
Eye Tracking Client Q :

Plugin Sensors

Frame Reprojection

Graphics Card Driver
and Time Wrap

VR Sensors VR Sensors VR Sensors

Display Refresh Display Refresh Display Refresh

g
A

" Fps =1
End-to-end Latency ! /max(Ts, Ty, Tp)

Figure 2: An example of a modern VR graphics pipeline.

Rendering Schemes

ElTracking Z4Rendering EIATW [@Display =e=FPS EHTracking [EHSending [@Rendering NNTransmit

— 140 — 18 EIATW @ADisplay ~ ——FPS
£ 120 | = . 16 =70 40
- ': 14
> 100 | /77 . z 12 £ 60 | 7
O _ N = 50 | & 30
c 80 [VLTIN 10 &Y o S
Y | g & 40 | N\ 7
+ 60 Y B w C % 20 o
b - . 6 3 30 N o
E - %{/ - %:/’i/ié;h . ’//fz 4 — 20 \\._%\' 10
@ B A ¥ g 10
2 : 0 o O 0
A\ -
7)) @z o&z . @o g
2> R @ %)
z o
«
(a) Local-only rendering (b) remote-only rendering

Static Collaborative Rendering

Use both local and remote rendering:

*Local Rendering
* Handle time-critical rendering workload near the HMD display

* Pre-defined interactive objects are often more lightweight than the background environment

*Remote Rendering
* Let the remote system handle the rest
* Offload background environment to the remote server.
* Also enable pre-rendering and prefetching for the background environment

Static Collaborative Rendering Pipeline

CPU] GPU [Network [N Video Decode] Remote GPU [LIWC [UCA[]

Static VR signal VR signal VR signal VR signal VR signal
Frame N o |
Frame N+1
Frame N+2

CL: software control logic LS: local setup
LR: local rendering C: composition
RR: remote rendering VD: video decoding

Static Collaborative Rendering
Challenges

*Figd- 2 is caused by misestimating hardware’s realtime processing capability and the changing
workload during the execution

°Fig.4- 3, several essential tasks including local rendering, composition and ATW all compete for
GPU resource

*Challenge I: Design Inflexibility and Poor Programmability.
* Random workloads due to users’ actions at realtime

* programmers are burdened to accommodate all the realtime constraints and reduce the interactive
concepts

*Challenge Il: Costly Remote Data Transmission

*Introduction
*Current VR Systems and Their Limitations

*Q-VR
* Software-level flexibility
* Hardware support

*Evaluation

*Summary

Solution - QVR

Software-hardware co-design solution for low-latency high-quality collaborative VR rendering
‘Reduce T

remote

*Dynamically balance local and remote rendering based on realtime constraints
Eliminate realtime hardware contention

Foveated rendering

Makes use of foveated rendering

human visual acuity falls off from the centre (fovea)
to the periphery

only 5 degrees central fovea area requires fine
details

for the periphery areas, the acuity requirement falls
off rapidly as eccentricity increases

foveated rendering, uses an eye tracker integrated
with a virtual reality headset to reduce the rendering
workload by greatly reducing the image quality in
the peripheral vision

Traditional foveated rendering

*Traditional foveated rendering decomposes into 3 layers:

* foveal layer (radius = el) eye tracking center
* middle layer (radius = e2) employs gradient

* outer layer which renders the periphery area with low resolution

Rendering Latency for varying el

=400 objects 4k triangles/object ——— 800 objects 4k triangles/object Average foveal layer rendering
= 400 objects 8K triangles/object == == Relative Frame Size

latency under the

increasing eccentricity when
running Foveated3D on Intel

Gen9 mobile processor. When the
eccentricity is < 15 degrees,

all types of scene complexities can
be handled within

the target latency requirements (<
11ms)

40%
36%
32%
28% -

24% =

local Rendering Latency (ms)

Normalized Frame Size

20%

e1 =30, e2= 30 e1 =20, e2=35 e1 =10, e2=50

Runtime-Aware Adaptive Foveal Sizing

Use Partition engine to dynamically calculate the eccentricity:

e distributed rendering programming model supported by lower-level graphics libraries
e with a software tuning-knob for fine-grained fovea control and software interfaces to the
graphics

o atclient, gather the foveat (X,Y) and el to setup the rendering viewports via VR SDK
e at server, extend the SOTA parallel VR rendering pipeline to setup multiple rendering
channels for middle and outer layers with calculated eccentricity (el,*e2)

—

Setu = = Confi =
VRS Graphics ‘—p| Partition Engine 8/ Foveated Composition
Setu
| Fovea(X, Y) | . 'p —— j N
| Eccentricities (e1, *e2) | Fovea Graphics Display” Channel
F Y -.w v 30 L ”n
| *Periphery Quality | I ove.a¥)f,) | E ’| Inpap foves |
. | Eccentn:ltles (e1) | E - __| Input “mid” |
“Periphery "Channels : E_ P
™M }+—{ o0 | “Fovea” Channel & ’ I out |
! Parallel Rendering ' i E
Remote GPUs Local GPU !

An example of software-level setup
and configuration in vision-perception

inspired Q-VR, its programming model,
and how it interfaces with hardware.

node { node { component {

pipe { pipe { channel {
window { window { name “Display”
name “Periphery" name “Fovea" inputframe “fovea”
viewportl1[Fovea(X,Y), *e:] viewport[Fovea(X.Y), e:] inputframe “mid”
channell{ name “mid" } channel{ name “fovea" } inputframe “out”
viewport2[(0,0)] } outputframe “framebuffer”
channel2{ name “out" } } }
} } }

} }

*Introduction
*Current VR Systems and Their Limitations

*Q-VR
 Software-level flexibility
* Hardware support

*Evaluation

*Summary

Lightweight Interaction-Aware
Workload Controller (LIWC)

* Key Design Insights
* Local rendering latency is sensitive to the scene complexity and realtime hardware processing capability
* Remote latency is dominated by the resolution and network bandwidth

* LIWC:

* SRAM to store the motion-to-eccentricity mapping table which records the latency gradient offset for all pairs of
motion information and eccentricity

* latency predictor to predict the current latency for the local and remote rendering
* motion codec to translate the motion information into table entry addresses
* runtime updater to update the mapping table and latency prediction parameters.

LIWC

Lightweight Interaction-aware Workload Controller

Eccentricity
>

User Input—— | ‘
- Movement Bits | EyeBits |«
H#Triangles —» c | — Y) ;
5 o2 | Gradient Offset [T, > ¢ Runtime | Monitor
Sl i Latency
£ Updater
Q
Data Size --.lﬂ e

Update the Latency Parameter

Figure 9: Architecture diagram of our proposed LIWC.

Unified Composition and ATW Unit
(UCA)

Key Design insights

o 2 filtering phases:
o Composition
o ATW

UCA

e Combine the 2 phases
o bypass CPU and avoid the software overhead between kernels
o ATW starts processing the non-overlapping tiles (e.g., tiles require no composition) earlier
o Can be executed in parallel with GPU

e UCA isimplemented as a separate hardware unit on SoC
e Consists of two microarchitecture components: 4 MULs for lens distortion and 8 SIMD4 FPUs
for coordination mapping and filtering

UCA

Baseline Fixed Software Execution Order:
b , LU <L o)
- - Anti- —e— = Bilinear
s i) o . s =
Aliasing - £ Filtering
©
Lens L Coordinate | | HMD
Distortion Mapping
Composition ATW

Pipeline-Reorder Execution in Unified Composition and ATW:

Coordinate

Lens L
Distortion Mapping

Bilinear |Bound Tiles Anti-
. : i HMD
Frame Drop Flltelrlng Aliasing

Non-overlapping Tiles

Figure 10: Comparison between baseline sequential execu-
tion and Unified Composition and ATW (UCA).

Results

cpu 1 GpU [Network I Video Decode [Remote GPU [LwC[] UCA[

Static VR signal VR signal VR signal VR signal VR signal
Frame N cL
Frame N+1
Frame N+2 . -
I
I 1
Q-VR VR signal VR signal VR sigrhl VR signal | | VRsignal 1
| |
Frame N ! |
I
Frame N+1 g :
Frame N+2 :l

Figure 4: Execution pipeline of static collaborative rendering and our proposed Q-VR. Q-VR’s software and hardware opti-
mizations are reflected on the pipeline. Rendering tasks are conceptually mapped to different hardware components, among
which LIWC and UCA are newly designed in this work. Intra-frame tasks may be overlapped in realtime (e.g., RR, network and
VD) due to multi-accelerator parallelism. CL: software control logic; LS: local setup; LR: local rendering; C: composition; RR:
remote rendering; VD: video decoding; LIWC: lightweight interaction-aware workload controller; UCA: unified composition

and ATW.

*Introduction
*Current VR Systems and Their Limitations

*Q-VR
* Software-level flexibility
* Hardware support

*Evaluation

*Summary

Network Transmission

R Static EFFR =Q-VR =8=Resolution Reduction

0.6

0.9
0.8
0.7
0.6
0.5
0.4
0.3

0.2 0.1
0.1

0o LN N N Ll o
Doom3-H Doom3-L HL2-H HL2-L GRID uT3 Wolf Avg.

0.5

0.4

0.3

0.2

Resolution Reduction

Normalized Transmit Data Size

Figure 13: The normalized transmitted data size and reso-
lution reduction from different designs under the default
hardware and network. The results are normalized to the
remote rendering design in commercial cloud servers.

Latency ratio and FPS

Doom3-H === HL2-H GRID uT3 Wolf Doom3-H HL2-H GRID ====UT3 ===~ \Nolf
6 300

w
N
(%
o

(o]
.g

4 OJ A A o N
i 5200 VAR 9“.‘ l. > l*‘h Ve o
Q o
c3 Q
Q
& 5150 ,
S8, g PN TR S R S N WP ey
Q
P
- 1 100 ' WA 2 » N [N A

/' Target FPS
0 50
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Frame ID Frame ID

(b) FPS Tremote/]-vlocal

(a) Latency Ratio

Figure 14: The Latency Ratios and FPS across 300 Frames.

Eccentricity Selection Under Different
Configurations
Table 4: Best Eccentricity Under Different Configurations

Freq. Net. Benchmarks
D3H D3L H2H H2L GD NIS WF
i Wi-Fi 164 853 274 332 99 272 153
IGLTE | 745 90 422 443 221 391 257
MHz fadysG [224 452 113 143 5 109 86
- WiFi 345 773 231 261 7.8 225 132
IGLTE | 643 90 345 392 155 324 185
MBz ' —aysc [153 302 78 115 5 74 61
200 Wi-Fi 275 654 164 245 65 143 113
vr, |AOLIE | 432 00 302 351 124 272 164

Farly 5G | 131 27.1 69 83 5 6.1 5

Performance

Pz Static BFFR EIDFR [Q-VR --SW-FPS =Q-VR-FPS

12

[
()}
Normalized FPS

Normalized Performance
OFRPNWPAMRUIONOOOWO

Doom3-H Doom3-L HL2-H HL2-L GRID uT3 Wolf Avg.

Figure 12: The normalized performance improvement from
different designs under the default hardware and network.
The results are normalized to the traditional local rendering
design appeared in today’s mobile VR devices.

*Introduction
*Current VR Systems and Their Limitations

*Q-VR
* Software-level flexibility
* Hardware support

*Evaluation

Summary

Summary

*ldentify the fundamental limitations of the state-off-the art collaborative
rendering design

*Design the first software-hardware co-designed collaborative rendering
architecture

*Create software level flexibility to reduce network limitation

*Introduce 2 new hardware components

Thank You

