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Introduction

Min performance requirements
e end-to-end latency (i.e., Motion to-Photon latency or MTP) < 25 ms
o framerate>90Hz~ 11ms

Mobile VR designs cannot satisfy the realtime performance requirements due to:

e highly interactive nature of user’s actions
e complex environmental constraints during VR execution

High quality VR applications are designed on a tethered setup which significantly limits users’ mobility

Authors propose Q-VR, a novel dynamic collaborative rendering solution via software-hardware co-design for
enabling future low-latency high-quality mobile VR.
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Modern VR System Components
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Figure 2: An example of a modern VR graphics pipeline.



Rendering Schemes
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(a) Local-only rendering (b) remote-only rendering



Static Collaborative Rendering

Use both local and remote rendering:

*Local Rendering
* Handle time-critical rendering workload near the HMD display

* Pre-defined interactive objects are often more lightweight than the background environment

*Remote Rendering
* Let the remote system handle the rest
* Offload background environment to the remote server.
* Also enable pre-rendering and prefetching for the background environment



Static Collaborative Rendering Pipeline
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CL: software control logic LS: local setup
LR: local rendering C: composition
RR: remote rendering VD: video decoding



Static Collaborative Rendering
Challenges

*Figd- 2 is caused by misestimating hardware’s realtime processing capability and the changing
workload during the execution

°Fig.4- 3, several essential tasks including local rendering, composition and ATW all compete for
GPU resource

*Challenge I: Design Inflexibility and Poor Programmability.
* Random workloads due to users’ actions at realtime

* programmers are burdened to accommodate all the realtime constraints and reduce the interactive
concepts

*Challenge Il: Costly Remote Data Transmission
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Solution - QVR

Software-hardware co-design solution for low-latency high-quality collaborative VR rendering
‘Reduce T

remote

*Dynamically balance local and remote rendering based on realtime constraints
Eliminate realtime hardware contention




Foveated rendering

Makes use of foveated rendering

human visual acuity falls off from the centre (fovea)
to the periphery

only 5 degrees central fovea area requires fine
details

for the periphery areas, the acuity requirement falls
off rapidly as eccentricity increases

foveated rendering, uses an eye tracker integrated
with a virtual reality headset to reduce the rendering
workload by greatly reducing the image quality in
the peripheral vision




Traditional foveated rendering

*Traditional foveated rendering decomposes into 3 layers:

* foveal layer (radius = el) eye tracking center
* middle layer (radius = e2) employs gradient

* outer layer which renders the periphery area with low resolution
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Runtime-Aware Adaptive Foveal Sizing

Use Partition engine to dynamically calculate the eccentricity:

e distributed rendering programming model supported by lower-level graphics libraries
e with a software tuning-knob for fine-grained fovea control and software interfaces to the
graphics

o atclient, gather the foveat (X,Y) and el to setup the rendering viewports via VR SDK
e at server, extend the SOTA parallel VR rendering pipeline to setup multiple rendering
channels for middle and outer layers with calculated eccentricity (el,*e2)
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An example of software-level setup
and configuration in vision-perception

inspired Q-VR, its programming model,
and how it interfaces with hardware.

node { node { component {

pipe { pipe { channel {
window { window { name “Display”
name “Periphery" name “Fovea" inputframe “fovea”
viewportl1[Fovea(X,Y), *e:] viewport[Fovea(X.Y), e:] inputframe “mid”
channell{ name “mid" } channel{ name “fovea" } inputframe “out”
viewport2[(0,0)] } outputframe “framebuffer”
channel2{ name “out" } } }
} } }

} }
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Lightweight Interaction-Aware
Workload Controller (LIWC)

* Key Design Insights
* Local rendering latency is sensitive to the scene complexity and realtime hardware processing capability
* Remote latency is dominated by the resolution and network bandwidth

* LIWC:

* SRAM to store the motion-to-eccentricity mapping table which records the latency gradient offset for all pairs of
motion information and eccentricity

* latency predictor to predict the current latency for the local and remote rendering
* motion codec to translate the motion information into table entry addresses
* runtime updater to update the mapping table and latency prediction parameters.



LIWC

Lightweight Interaction-aware Workload Controller
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Figure 9: Architecture diagram of our proposed LIWC.



Unified Composition and ATW Unit
(UCA)

Key Design insights

o 2 filtering phases:
o Composition
o ATW

UCA

e Combine the 2 phases
o bypass CPU and avoid the software overhead between kernels
o ATW starts processing the non-overlapping tiles (e.g., tiles require no composition) earlier
o Can be executed in parallel with GPU

e UCA isimplemented as a separate hardware unit on SoC
e Consists of two microarchitecture components: 4 MULs for lens distortion and 8 SIMD4 FPUs
for coordination mapping and filtering



UCA
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Figure 10: Comparison between baseline sequential execu-
tion and Unified Composition and ATW (UCA).




Results
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Figure 4: Execution pipeline of static collaborative rendering and our proposed Q-VR. Q-VR’s software and hardware opti-
mizations are reflected on the pipeline. Rendering tasks are conceptually mapped to different hardware components, among
which LIWC and UCA are newly designed in this work. Intra-frame tasks may be overlapped in realtime (e.g., RR, network and
VD) due to multi-accelerator parallelism. CL: software control logic; LS: local setup; LR: local rendering; C: composition; RR:
remote rendering; VD: video decoding; LIWC: lightweight interaction-aware workload controller; UCA: unified composition

and ATW.
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Network Transmission
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Figure 13: The normalized transmitted data size and reso-
lution reduction from different designs under the default
hardware and network. The results are normalized to the
remote rendering design in commercial cloud servers.



Latency ratio and FPS
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Figure 14: The Latency Ratios and FPS across 300 Frames.




Eccentricity Selection Under Different
Configurations
Table 4: Best Eccentricity Under Different Configurations

Freq. Net. Benchmarks
D3H  D3L H2H H2L GD NIS WF
i Wi-Fi 164 853 274 332 99 272 153
IGLTE | 745 90 422 443 221 391 257
MHz  fadysG [ 224 452 113 143 5 109 86
- WiFi 345 773 231 261 7.8 225 132
IGLTE | 643 90 345 392 155 324 185
MBz ' —aysc [ 153 302 78 115 5 74 61
200 Wi-Fi 275 654 164 245 65 143 113
vr, |AOLIE | 432 00 302 351 124 272 164

Farly 5G | 131 27.1 69 83 5 6.1 5




Performance
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Figure 12: The normalized performance improvement from
different designs under the default hardware and network.
The results are normalized to the traditional local rendering
design appeared in today’s mobile VR devices.
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Summary

*ldentify the fundamental limitations of the state-off-the art collaborative
rendering design

*Design the first software-hardware co-designed collaborative rendering
architecture

*Create software level flexibility to reduce network limitation

*Introduce 2 new hardware components
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