
Q-VR: System-Level 
Design for Future 
Mobile Collaborative 
Virtual Reality
CHENHAO XIE, XIE LI, YANG HU, HUWAN PENG, 
MICHAEL TAYLOR, SHUAIWEN LEON SONG

Presentation by-Ayush Garg



Presentation 
Overview

•Introduction

•Current VR Systems and Their Limitations

•Q-VR
• Software-level flexibility 

• Hardware support

•Evaluation

•Summary



Introduction
Min performance requirements
● end-to-end latency (i.e., Motion to-Photon latency or MTP) < 25 ms 
● frame rate > 90 Hz ~ 11ms

Mobile VR designs cannot satisfy the realtime performance requirements due to: 

● highly interactive nature of user’s actions
● complex environmental constraints during VR execution

High quality VR applications are designed on a tethered setup which significantly limits users’ mobility

Authors propose Q-VR, a novel dynamic collaborative rendering solution via software-hardware co-design for 
enabling future low-latency high-quality mobile VR.



•Introduction

•Current VR Systems and Their Limitations

•Q-VR
• Software-level flexibility

• Hardware support

•Evaluation

•Summary



Modern VR System Components



Rendering Schemes



Static Collaborative Rendering
Use both local and remote rendering:

•Local Rendering
• Handle time-critical rendering workload near the HMD display 

• Pre-defined interactive objects are often more lightweight than the background environment

•Remote Rendering
• Let the remote system handle the rest

• Offload background environment to the remote server. 

• Also enable pre-rendering and prefetching for the background environment



Static Collaborative Rendering Pipeline

CL: software control logic LS: local setup
LR: local rendering C: composition
RR: remote rendering VD: video decoding



Static Collaborative Rendering 
Challenges

•Fig4- 2 is caused by misestimating hardware’s realtime processing capability and the changing 
workload during the execution

•Fig.4- 3, several essential tasks including local rendering, composition and ATW all compete for 
GPU resource

•Challenge I: Design Inflexibility and Poor Programmability.
• Random workloads due to users’ actions at realtime

• programmers are burdened to accommodate all the realtime constraints and reduce the interactive 
concepts

•Challenge II: Costly Remote Data Transmission



•Introduction

•Current VR Systems and Their Limitations

•Q-VR
• Software-level flexibility

• Hardware support

•Evaluation

•Summary



Solution - QVR

Software-hardware co-design solution for low-latency high-quality collaborative VR rendering
•Reduce 𝑇𝑟𝑒𝑚𝑜𝑡𝑒
•Dynamically balance local and remote rendering based on realtime constraints

•Eliminate realtime hardware contention



Foveated rendering
•Makes use of foveated rendering

• human visual acuity falls off from the centre (fovea) 
to the periphery

• only 5 degrees central fovea area requires fine 
details

• for the periphery areas, the acuity requirement falls 
off rapidly as eccentricity increases

• foveated rendering, uses an eye tracker integrated 
with a virtual reality headset to reduce the rendering 
workload by greatly reducing the image quality in 
the peripheral vision



Traditional foveated rendering

•Traditional foveated rendering decomposes into 3 layers:

• foveal layer (radius = 𝑒1) eye tracking center 

• middle layer (radius = 𝑒2) employs gradient

• outer layer which renders the periphery area with low resolution



Rendering Latency for varying e1
Average foveal layer rendering 
latency under the
increasing eccentricity when 
running Foveated3D on Intel
Gen9 mobile processor. When the 
eccentricity is ≤ 15 degrees,
all types of scene complexities can 
be handled within
the target latency requirements (≤ 
11ms)



Runtime-Aware Adaptive Foveal Sizing

Use Partition engine to dynamically calculate the eccentricity:
● distributed rendering programming model supported by lower-level graphics libraries
● with a software tuning-knob for fine-grained fovea control and software interfaces to the 

graphics

● at client, gather the 𝑓𝑜𝑣𝑒𝑎𝑡 (𝑋,𝑌) and 𝑒1 to setup the rendering viewports via VR SDK
● at server, extend the SOTA parallel VR rendering pipeline to setup multiple rendering 

channels for middle and outer layers with calculated eccentricity (𝑒1,∗𝑒2)



An example of software-level setup 
and configuration in vision-perception 
inspired Q-VR, its programming model, 
and how it interfaces with hardware.



•Introduction

•Current VR Systems and Their Limitations

•Q-VR
• Software-level flexibility

• Hardware support

•Evaluation

•Summary



Lightweight Interaction-Aware 
Workload Controller (LIWC)

• Key Design Insights
• Local rendering latency is sensitive to the scene complexity and realtime hardware processing capability 

• Remote latency is dominated by the resolution and network bandwidth

• LIWC:
• SRAM to store the motion-to-eccentricity mapping table which records the latency gradient offset for all pairs of 

motion information and eccentricity

• latency predictor to predict the current latency for the local and remote rendering

• motion codec to translate the motion information into table entry addresses

• runtime updater to update the mapping table and latency prediction parameters.



LIWC



Unified Composition and ATW Unit 
(UCA)

Key Design insights
● 2 filtering phases:

○ Composition
○ ATW

UCA

● Combine the 2 phases
○ bypass CPU and avoid the software overhead between kernels
○ ATW starts processing the non-overlapping tiles (e.g., tiles require no composition) earlier
○ Can be executed in parallel with GPU

● UCA is implemented as a separate hardware unit on SoC
● Consists of two microarchitecture components: 4 MULs for lens distortion and 8 SIMD4 FPUs 

for coordination mapping and filtering



UCA



Results



•Introduction

•Current VR Systems and Their Limitations

•Q-VR
• Software-level flexibility

• Hardware support

•Evaluation

•Summary



Network Transmission



Latency ratio and FPS

𝑇𝑟𝑒𝑚𝑜𝑡𝑒/𝑇𝑙𝑜𝑐𝑎𝑙



Eccentricity Selection Under Different 
Configurations



Performance



•Introduction

•Current VR Systems and Their Limitations

•Q-VR
• Software-level flexibility

• Hardware support

•Evaluation

•Summary



Summary
•Identify the fundamental limitations of the state-off-the art collaborative 
rendering design

•Design the first software-hardware co-designed collaborative rendering 
architecture

•Create software level flexibility to reduce network limitation

•Introduce 2 new hardware components



Thank You


