
Peeking Behind the
Curtains of Serverless
Platforms
Liang Wang, Uw-madison; Mengyuan Li And Yinqian Zhang, The
Ohio State University; Thomas Ristenpart, Cornel l Tech; Michael
Swif t , Uw-madison

Presented by-Ayush Garg

Paper Contributions
•In-depth study of resource management and performance isolation in

•Identify opportunities to improve serverless platforms
• AWS: Bad performance isolation, function consistency issue, …

• Azure: Unpredictable performance, tenant isolation issues, …

• Google: Resource accounting bug, …

•Open-source measurement tool
• (https://github.com/liangw89/faas_measure)

Presentation
Overview

Serverless Introduction

Methodology

Results
◦ Serverless Architecture

◦ Resource Scheduling

◦ Performance Isolation

◦ Bugs

Summary

Providers do more, tenant do less

How Serverless Works
A function runs in a container (function instance) launched by the provider with limited CPU/memory/execution time

Serverless Introduction

Methodology

Results
◦ Serverless Architecture

◦ Resource Scheduling

◦ Performance Isolation

◦ Bugs

Summary

Methodology
Invoke measurement functions many times (50K+) under various settings from vantage points in the
same cloud region

Measurement function
◦ Collect information via procfs/cmd/env

◦ Execute performance tests

Setting variables:
◦ Function memory

◦ Function language

◦ Request frequency

◦ Concurrent request

Time:

◦ July–Dec 2017, May 2018

Serverless Introduction

Methodology

Results
◦ Serverless Architecture

◦ Resource Scheduling

◦ Performance Isolation

◦ Bugs

Summary

Instance Identification
Write a unique file on /tmp→persistent during instance lifetime

VM Identification
AWS

• Entry in /proc/self/cgroup called “instance
root ID”

• Verified by I/O-based coresidency tests, and

• Have same VM public IP and VM private IP

Azure

•The WEBSITE INSTANCE ID
environment variable

Google

•No information

•Procfs does not contain global
usage statistics

IO based Coresidency Test

Tenant Isolation

As of May 2018, different tenants have different VM’s in Azure

tenant = 1 user account

VM Configurations
AWS

• Use procfs file to read global
statistics

• VMs can have 1, 2 or 4 vCPUs

Azure
• Environment variables

collected suggest the host VMs
can have 1, 2 or 4 CPUs.

Google
• Isolates and filters information

that can be accessed from procfs

• many system files and syscalls
are obscured

• /proc/meminfo and
/proc/cpuinfo files suggest a
function instance has 2GB RAM
and 8 vCPUs

Serverless Introduction

Methodology

Results
◦ Serverless Architecture

◦ Resource Scheduling

◦ Performance Isolation

◦ Bugs

Summary

Can the platforms effectively handle
concurrent requests

Methodology: send N concurrent requests and examine the number of instances running concurrently

AWS
• AWS could easily scale up to 200

functions

• Max 3328 MB memory per VM

Azure
• Only 10 instances

• Most of the functions
coresident on 1 vCPU VM

• Vulnerable to attacks (Fixed in
May 2018)

Google
• Half of expected instances

How long does it take to launch an
instance?

Median coldstart latency of 1000 instances

AWS: 160 ms
has a pool of ready VMs

Google: 500 ms (2017)
→2000 ms (2018)

Azure: 3600 ms (2017)
→ 300 ms (2018)

Median coldstart latency(ms) per hour over
7 days (2017)

Instance lifetime
There is a trade-off between long and short idle time, as maintaining more idle instances is a waste of VM
memory resources, while fewer ready-to-serve instances cause more coldstarts.

Serverless Introduction

Methodology

Results
◦ Serverless Architecture

◦ Resource Scheduling

◦ Performance Isolation

◦ Bugs

Summary

Performance Isolation

CPU share: Fraction of 1000-ms time period for which the instance can use CPU

IO throughput: Write 512 KB of data to the local disk 1,000 times (via dd or scripts)

Network throughput: Use iperf3 to run the throughput test for 10 seconds

AWS Azure Google

Coresidency Yes Yes Unknown

VM Configuration No Yes No

Coresidency

Resources are allocated per VM More co-residency decreases resources per function

VM configuration (AZURE)

4-vCPU VMs get 1.5x IO throughput, 2x network throughput, and more CPU than other types of VMs

Serverless Introduction

Methodology

Results
◦ Serverless Architecture

◦ Resource Scheduling

◦ Performance Isolation

◦ Bugs

Summary

AWS: Function Consistency
Inconsistent behaviour: requests handled by an old version of the function

AWS: Inconsistent function usage

3.8% (out of 20K) ran an inconsistent or outdated function

◦ Case 1: New instances ran outdated functions (0.1%)

◦ Case 2: Requests handled by the instances for outdated functions (3.7%)

Inconsistent responses to users

Google: Stealthy background process
Processes can run after function invocation concluded

exports.handler = function handler(req, res) {
// run asynchronous task here.
line A: user_task();
// send back results.
line B: res.status(http_code).send(user_data);
}

Nodejs will execute line B
without waiting for
user_task returns

Processes can stay alive for to 21 hours
• No billing →Use extra resources for free!

Serverless Introduction

Methodology

Results
◦ Serverless Architecture

◦ Resource Scheduling

◦ Platform Isolation

◦ Bugs

Summary

Summary
In-depth measurement study that discover various issues in three serverless computing
platforms

◦ Unpredictable performance

◦ Bad performance isolation

◦ Consistency issues

Performance baselines and design considerations for future design of serverless
platforms

Thank You

