
An Empirical Study of Latency
in an Emerging Class of Edge Computing Applications

for Wearable Cognitive Assistance

Carnegie Mellon University and Intel Labs
Presented by Andrew Neth



Introduction

● Why edge computing?
○ Low latency
○ Portability tends to cost performance

● Resource-hungry applications that won’t run on mobile devices 
anytime soon

● Wearable devices that interface closely with the user
● Wearable cognitive assistance applications

○ Wearable devices stream sensor data to cloudlets
○ Cloudlet performs intensive data processing and sends guidance messages to 

wearable
○ Wearable presents feedback to user with (ideally) very low latency
○ “Bring[s] AI technologies within the inner loop of human cognition and interaction”



Goals

Latency is critical in these applications

● Where does the time go?
● Is (single-hop) LTE a viable substitute for Wi-Fi?
● How much cloudlet power do these applications need?
● Does specialized hardware (e.g. a GPU) help?
● What are the lower and upper bounds on acceptable latency?
● Is latency a problem that more processing power can solve?



Applications



“Pool”

Helps a novice pool player adjust aim.

Uses a “fractional aiming system” to 
calculate correct angle, giving continuous 
feedback as to how the user should adjust 
their angle.

Symbolic representation: positions of 
pocket, object ball, cue ball, and cue 
top/bottom

Guidance format: Continuous graphical 
display of left/right arrow or thumbs up



“Ping-pong”

Tells a novice player whether they should 
hit the ball to the left or the right based on 
which it thinks is more likely to beat the 
opponent.

Finds objects in the scene (ball, table, 
opponent) using optical-flow based 
motion detection

Symbolic representation: in-rally status, 
ball position, opponent position

Guidance format: Spoken message of 
“Left!” or “Right!”



“Workout”

Tells a novice player whether they should 
hit the ball to the left or the right based on 
which it thinks is more likely to beat the 
opponent.

Finds objects in the scene (ball, table, 
opponent) using optical-flow based 
motion detection

Symbolic representation: action, rep count

Guidance format: spoken rep count



“Face”

Recognizes a familiar face using a deep 
residual network, reminding the user of 
their name.

Can be used in conjunction with the 
Expression conversation aid application

Symbolic representation: name as ASCII

 Guidance format: spoken name of 
recognized person



“Lego”

Guides a user through the process of 
assembling a (2D) Lego model.

Identifies the board using an 
easily-tracked pattern

Uses edge/color detection to locate bricks 
on the board

Uses weighted majority voting to 
determine the brick color within each 
block

Symbolic representation: matrix of brick 
color values within the grid of the board

 Guidance format: instructions— “put a 1x3 
green piece on top”



“Draw”

Helps a user sketch an existing image

Built on an existing third-party app that 
displays similar feedback on a screen and 
for digital drawings

Now works with any (visible) drawing 
medium and displays the error alignment 
using Google Glass

Symbolic representation: matrix of brick 
color values within the grid of the board

 Guidance format: instructions— “put a 1x3 
green piece on top”



“Sandwich”

Helps a user sketch an existing image

Built on an existing third-party app that 
displays similar feedback on a screen and 
for digital drawings

Now works with any (visible) drawing 
medium and displays the error alignment 
using Google Glass

Symbolic representation: object 
structure— “lettuce on top of ham and 
bread”

 Guidance format: instructions— “put a 
piece of bread on the lettuce”



Applications

Differences

● Different ML algorithms employed

● Different forms of guidance

● Different latency requirements

● Different levels of interactivity

Similarities

● All based on visual input
● All first-person (except “Workout”)
● Shared logical structure

○ Sensory input analyzed to get 
symbolic representation

○ Symbolic representation further 
analyzed to generate guidance

○ Guidance sent to wearable and 
presented to user



The Gabriel Platform

The structural similarities across the apps 
allow them to all be implemented on top 
of the Gabriel offloading framework.

● Control VM receives sensor stream 
from device; shares with “cognitive 
engines”

● Cognitive VMs process sensor data to 
generate symbolic representation

● User guidance VM performs “phase 2” 
processing to generate guidance Gabriel Architecture

Sensor stream is 640x360@≤15fps video

Guidance messages are JSON, usually <1kB



Specific Questions

● How much does edge computing affect end-to-end latencies of 
these applications?

● How does edge computing based on cellular/LTE compare with that 
based on WiFi?

● Does the choice of end-user device affect performance?
● How much can hardware accelerators and extra CPU cores in the 

back-end help?
● Short of devising revolutionary new algorithms, what can we do to 

improve cloud/cloudlet processing time?
● How hard do we need to work at reducing latency?



Testing

● Two backends: i7-3770 cloudlet, Amazon EC2 3.2xlarge cloud
● Five frontends: Nexus 6 (represents high-end wearable), Google 

Glass, Microsoft HoloLens, Vuzix M100, ODG R7
● Devices use 5 GHz 802.11n WiFi where possible and the best available 

option otherwise
● For consistency, devices send pre-recorded frames (but have the 

camera on) and are cooled with ice packs



Data

The “WiFi cloudlet + Phone” configuration is 
generally the fastest out of those tested

Variation in CDF line shape is mostly due to 
variation in frame compression time

Massive variations between applications: 
“Sandwich” almost 100x slower than “Pool”

Using AWS-West over a local cloudlet adds 
significant (for most applications) latency: 
>2x for “Pool”, but negligible for “Sandwich”

the cloud is slow



Latency Breakdown

Primary conclusion: Cloudlets show significant reduction of transmission times and 
overall latency advantage

Compute time is almost unchanged between cloudlet & cloud

“Drawing” is the only case where phase 2 computation is non-trivial (it uses complex 
third-party software to generate guidance)

The high latency of “Sandwich” is basically all from phase 1 computation (it uses an 
expensive deep neural network)



Latency Breakdown: WiFi vs. 4G LTE

What if we had an LTE-connected cloudlet instead of using 
WiFi?

With help from Vodafone Research, set up a low-power 
local LTE network for testing

Conclusion: 4G LTE is worse than WiFi (expected), but still 
not too bad

5G also holds promise2017 for further improvements

As before, the significance of the added latency depends 
on how much latency the application already has



Latency Breakdown: Frontend Hardware

Even though we’re offloading, wearable 
device performance still matters

Some compress more slowly than others

Google Glass, with 2.4 GHz 802.11b/g, 
transmits more slowly, and the Vuzix 
device is also somewhat slow there

Yet again, difference is more meaningful 
for “Pool” than for “Lego”



Can we make the yellow bar smaller?



What if we used more cores?

Multithreading, our old friend

Sometimes helpful, sometimes not

Ability to leverage CPU parallelism depends on algorithm: “Sandwich” 
sees reasonable benefits (albeit with diminishing returns), but “Lego” 
does not

Even with eight cores, “Sandwich” latency remains above any acceptable 
maximum



What if we used more cores?
Some algorithms benefit greatly from GPU acceleration

“Sandwich” and “Face” both use GPU-optimized NN libraries

“Sandwich” sees massive improvements, but “Face” barely changes

Benefits are application-dependent, so figure out if it makes sense for 
your application before making an investment



good algorithsm are slow [sic]

The computer vision community is largely focused on accuracy, 
performance be damned

Former state-of-the-art algorithms may be less accurate but also less 
demanding

 Algorithm inaccuracies aren’t noise: if an algorithm’s results are good, 
they’re likely to keep being good under consistent conditions

Devise a “Black-box multi-algorithm approach that compares faster 
algorithms to more accurate ones



The Algorithm Competition

Key insight: algorithm accuracy exhibits temporal locality

Algorithm mistakes depend on input characteristics, not random events

Run a fast but less-reliable algorithm and a slow but robust algorithm 
concurrently & compare results

If the fast algorithm agrees with the robust one for long enough, start to trust 
it and use its output. Until then, wait for known-good results

If fast algorithm’s output deviates, temporarily stop trusting it and revert to just 
checking its trustworthiness

Works very well: Improves “Face”, “Lego”, and “Sandwich” by about ⅔ each



Acceptable Latency

Human perception is very fuzzy, but we can still establish approximate 
lower/upper bounds

“Tight bound”: don’t bother trying to do any better than this

“Loose bound”: any slower than this threshold is perceptibly slow

For continuous feedback like “Pool”, response times of 100±5ms are 
perceived as instantaneous, so that’s the loose bound

For the guidance model of “Ping-pong”, loose bound is somewhere 
around 225ms



Acceptable Instructional Latency?

What are the bounds for tasks like “Lego” and “Sandwich”?

There’s not much existing research about this— past almost-relevant 
research has mostly been about devices responding to user input, not 
prompting of user action once the user is ready for a prompt

“Wizard of Oz” experiment with “Lego” application: human expert 
recognizes step completion, but artificial latency is injected before 
guidance is presented

2.7 second experimental bound



bottom text


