
CloneCloud
PRESENTED BY AYUSH GARG



Motivation/Introduction

 Mobile applications with richer functionalities are becoming

ubiquitous

 But mobile devices are limited by their computing resources

 Cloud – the place for abundant resources

 Clouds provide opportunity to do huge computations quickly and

accurately

So why not use cloud for mobile computations??



Goals

 Main Goal

 CloneCloud boosts unmodified mobile applications by seamlessly off-
loading part of their execution from the mobile device onto device
clones operating in a computational cloud

 Other Aims:

 Allow fine grained flexibility on what to run where

 Take programmer out of partitioning business



CloneCloud

 Follows the intuition that “as long as execution on the cloud is

significantly faster than execution on the mobile device, paying the

cost for sending the relevant data and code from the device to the

cloud and back may be worth it.”

 The partitioning component for finding migration points uses – static

analysis to find the constraints and the dynamic profiling for building

the cost model for execution and migration

 It finally uses an optimizer that uses the above constraints and cost

models to derive the partitions



 Schema

 Partitioning

 Static Analyzer

 Dynamic Profiler

 Optimization Solver

 Distributed Execution

 Evaluation

 Conclusion

Overview



Schema

 Clone an unmodified application
executable

 The executable is running at mobile
device

 At automatically chosen points
individual threads migrate to device
clone in cloud along with the
application state

 Migrated thread executes on clone
accessing native features on
hosting platform

 Merge remote and local state back
into original process



 The partitioning mechanism yields the

partitions in the application

 Run multiple time under different

conditions and objective functions –

stores all partitions in a database

 At run time, the execution picks a

partition among these and modifies

the executable before invocation

 It has three components –

 static analyzer

 dynamic profiler

 optimization solver

Partitioning



Static Analyzer

 Identifies the legal partitions of the
application executable according
to a set of constraints

 Migration is restricted to the method
entry and exit points

 Two more restrictions for simplicity

 Migration is allowed only at the
boundaries of application
methods but not core system
library methods

 Migration is allowed at the VM-
layer method boundaries but not
native method boundaries



Static Analyzer - constraints

 Methods that access specific features of a machine must be pinned to
the machine [VM]

 Static analysis marks the declaration of such methods with a special
annotation M

 Done once for each platform, not repeated for each application

 Methods that share native state must be collocated at the same
machine [VNatC]

 When an image processing class has initialize, detect and fetchresult
methods that access native state, they need to be collocated

 Prevent nested migration

 Static analysis of the control flow graph to identify the set of methods
called directly by a method (DC) and transitively (TC)



 Profiler collects data used to construct cost model

 Uses randomly chosen set of inputs

 Each execution is run once on mobile device and once on the

clone in the cloud

 Profiler outputs set of executions S and a “profile tree”, for both

mobile device and the clone

 Example…

Dynamic Profiler



Dynamic 

Profiler -

example



Dynamic Profiler - Profile tree

 One node for each method invocation

 Every non-leaf node also has a leaf child called its residual node

 Residual node holds residual cost which represents the cost of running
the body of code excluding the costs of the methods called by it

 Each edge is annotated with the state size at the time of invocation of
the child node, plus the state size at the end of that invocation

 Amount of data that the migrator needs to capture and transmit in
both directions if the edge were to be a migration point

 Computation cost Cc(i, l); l=0 on mobile device and filled from T, l=1 on
the clone and filled from T’

 Migration cost Cs(i); sum of a suspend/resume cost and the transfer cost



Optimization Solver

 Aim is to pick application methods to migrate to the clone to

minimize the expected cost of the partitioned application

 Decision variable R(m) m= method in the application.

 R(m)=1 -> partitioner places a migration point at the entry point of

the method.

 R(m) = 0 -> method m is unmodified in the application binary

 But not all partitioning choices for R(.) are legal



Optimization problem

 Using the decision variables 

R(.), the auxiliary decision 

variables L(.), the method sets 

VM and VNatC for all classes C 

defined during static analysis, 

and the relations I, DC and TC

 DC(m1,m2 -> method m1 Directly Calls 

method m2

 TC(m1,m2) -> method m1 Transitively 

Calls method m2



Cost of a partition

 The cost of a legal partition R(.) of execution E is given by

 Optimization objective is to choose R() to minimize σ𝐸ε𝑆C(E)



Distributed Execution

At Mobile Device:

 User attempts to launch partitioned 
application

 Execution conditions looked up in db

 Return binary of modified application

 New process launched

 Migration point->

 Executing thread is suspended

 State (stack frames, relevant data 
objects in heap and register contents) 
packaged and shipped to synchronized 
clone

 Returned package is merged int state of 
original process

At Clone:

 Thread state is initiated with migrated 
stack and heap objects

 Thread resumed

 Integration point->

 Suspended, state packaged and 
shipped 



Distributed Execution -

Components

 Migrator:

 per process

 manipulates internal state of application-layer virtual machine

 Node Manager:

 per node

 enables application-unspecific node maintenance, including file-
system synchronization

 amortizes the cost of communicating with the cloud over a single, 
possibly authenticated and encrypted transport channel

 Partition Database



Migration 

Overview



Migration Overview

Suspend and Capture

 Migrator suspends migrant thread

 Captures its state, passes it to node manager

 Node manager transfers the capture to clone

Resume and Merge

Resume:

 Node manager transfers capture to migrator

 Migrator overlays the thread context over the
clean process address space

 Captured classes and object instances are allocated in
the virtual machine’s heap

 New thread is created with the state, heap and registers

 At integration point, clone's thread migrator
captures and packages the thread state

 Node manager transfers the capture back to the
mobile device

 Migrator in the original process is given the capture
for resumption

Merge:

 the context updates the original thread state to
match the changes effected at the clone



Evaluation



Conclusion

 A design that achieves basic augmented execution of mobile applications on
the cloud

 Prototype delivers up to 20x speed up

 Programmer involvement is not required

 Opens up a path for a rich research agenda in hybrid mobile-cloud systems

Two unique features of CloneCloud 

 Thread granularity migration:

 migration operates at the granularity of a thread

 Native-Everywhere: 

 enables migrated threads to use native non-virtualized hardware(GPUs, Cryptographic 
accelerators etc.)



Thank You!


