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Motivation of this investigation

• Short-lived function causes locality-exploiting structures like branch 
predictors to underperform
• Deeply-virtualized environment comes with overheads
• FaaS platform brings new, unforseen overheads and challenges for 

architectural optimization
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Takeaways

• FaaS containerization brings up to 20x slowdown compared to native 
execution
• cold-start can be over 10x a short function’s execution time
• branch mispredictions per kilo-instruction are 20x higher for short 

functions
• memory bandwidth increases by 6x due to the invocation pattern
• PC decreases by as much as 35% due to inter-function interference
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Overheads breakdown
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Experiment environment

CPU: Intel Xeon E5-2620 v4, 8-core, 16-thread, 20MB of L3 cache.
Memory: 16GB of 2133MHz DDR4 RAM connected to a single channel
Platform: Apache OpenWhisk
OS: Ubuntu 16.04.04 LTS
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FaaSProfiler

• Arbitrary mix of functions and invocation patterns
• Large amount of performance and profiling data
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PaaSProfiler and Open Whisk
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Example Workload Configuration JSON
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Benchmarks

• Subset of Python Performance Benchmark Suite
• Five Faas functions
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Five Faas functions
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Latency Modes and Server Capacity
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Latency Breakdown
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Branch prediction
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Branch prediction
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Branch prediction
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Last-level Cache
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Memory Bandwidth
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Memory Bandwidth
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Invoker Scheduling
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Invoker Scheduling
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Interference
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Overhead of Containers
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Overhead of Containers
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