
Architectural Implications of 
Function-as-a-Service 

Computing
Micro 19’

Authors: Mohammad Shahrad, Jonathan Balkind, David Wentzlaff

1



Motivation of this investigation

• Short-lived function causes locality-exploiting structures like branch 
predictors to underperform
• Deeply-virtualized environment comes with overheads
• FaaS platform brings new, unforseen overheads and challenges for 

architectural optimization

2



Takeaways

• FaaS containerization brings up to 20x slowdown compared to native 
execution
• cold-start can be over 10x a short function’s execution time
• branch mispredictions per kilo-instruction are 20x higher for short 

functions
• memory bandwidth increases by 6x due to the invocation pattern
• PC decreases by as much as 35% due to inter-function interference

3



Overheads breakdown

4



Experiment environment

CPU: Intel Xeon E5-2620 v4, 8-core, 16-thread, 20MB of L3 cache.
Memory: 16GB of 2133MHz DDR4 RAM connected to a single channel
Platform: Apache OpenWhisk
OS: Ubuntu 16.04.04 LTS

5



FaaSProfiler

• Arbitrary mix of functions and invocation patterns
• Large amount of performance and profiling data

6



PaaSProfiler and Open Whisk

7



Example Workload Configuration JSON

8



Benchmarks

• Subset of Python Performance Benchmark Suite
• Five Faas functions

9



Five Faas functions

10



Latency Modes and Server Capacity

11



Latency Breakdown

12



Branch prediction

13



Branch prediction

14



Branch prediction

15



Last-level Cache

16



Memory Bandwidth

17



Memory Bandwidth

18



Invoker Scheduling

19



Invoker Scheduling

20



Interference

21



Overhead of Containers

22



Overhead of Containers

23


