
Fast, Scalable and Secure Onloading of 
Edge Functions Using AirBox

2016

Ketan Bhardwaj, Ming-Wei Shih, Pragya Agarwal, Ada Gavrilovska, Taesoo Kim, Karsten Schwan
College of Computing, Georgia Institute of Technology, Atlanta, GA

Presentation by Francis Rinaldi



Edge Computing Improves User Experience
● Lower Access Latency to Backend Services
● Lower Cost of Accessing Backend Services
● Addresses Resource Constraints of Mobile Devices



Client-Driven Cyber-foraging
● Offloads Computation from Client
● Challenge to Control or Predict the Internet Access Latency
● Difficult to Create for Diverse Range of Clients

Backend-Driven Cyber-foraging
● Onloads Benefits from Server
● Can Recognize Usage Patterns to Optimize Onloading
● Can Aggregate Client Requests to Reduce Internet Traffic



Edge Function (EF)

Edge Function Platform (EFP)



Goals of Sufficient EFP - Designing EFs
● Constraints are Few to None
● Based At Most on Standard System Libraries
● Possible Support for Common Software Patterns



Goals of Sufficient EFP - Provisioning
● Just In Time Provisioning
● Low Compute Time
● Good Scaling



Goals of Sufficient EFP - Security
● Critical Functionalities

○ Verification of EF Integrity
○ Confidentiality of Data
○ Secure Handling of User Traffic

● Low Overhead
● Cannot Rely on System Software



● Developer Constraints
● Provisioning Performance
● Security and Privacy



Design Constraints
VM Container Sandbox

● Develop EFs with 
Any OS, Libraries, 
and/or Applications

● Package and Send 
VM Image Easily

● Must Develop for a 
Supported OS

● Not a Large Issue

● Requires Use of 
Specific Toolchain or 
Linking with a 
Platform-Specific 
ABI Library

● High Learning Curve



Provisioning Performance



Provisioning Performance



Provisioning Performance



Security and Privacy
● Privileged Software “In the Wild” Cannot be Trusted by EFs
● Security Requirements:

○ Integrity Verification
○ Execution Security
○ Data Confidentiality

● Neither VMs, Containers, nor Sandboxes Can Fulfill All 
Requirements Alone without Trusting Privileged Software



Security and Privacy
VM Container Sandbox

● No Secure Way to 
Verify Execution

● Cannot Use a 
Possibly Malicious 
Host Image

● Weaker Isolation
● Shared Kernel 

Creates a Larger 
Attack Surface

● Stronger Security
● Shared Kernel 

Creates a Larger 
Attack Surface



Security and Privacy
● Intel SGX Hardware Security
● Haven - Monitors all System Interaction to use SGX 

○ High Overhead
○ Large Attack Surface

● VC3 - Reduces Downsides of Haven by Partitioning EFs into 
Trusted and Untrusted Parts



Airbox
● Docker

○ Kernel Namespaces - Isolation
○ Cgroups - Resource Allocation and Setting Limits
○ Union File System - Application Layers



Airbox
● Intel SGX

○ Secure ISA Extension - Enclaves
○ Remote Attestation - Remote Integrity Checks
○ Sealing - Secure Data in Non-Volatile Memory
○ Memory Protection - More Checks for Memory Access



Airbox
● OpenSGX

○ Hardware Emulation Module
○ Operating System Emulation
○ Enclave Loader
○ User Library
○ Debugging Support
○ Performance Monitoring



Secure Provisioning in AirBox
● Backend Service Either:

○ Creates its own EF binaries
○ Uses Available Docker Images
○ Registers a Docker Image Containing an EFT Binary and 

Creates a Docker File
● To Provision an EF, Sysadmins Sends Commands through 

AB Console to the AB Provisioners on Edge Machines
● When an EF is Booted, it Checks its Integrity with SGX’s 

Remote Attestation



AirBox EF Anatomy
● EFs can be Compromised by Logged System Calls (I/O)
● SGX Enclaves have Large Overheads
● Minimizing Code Run in Enclaves is Desired
● Untrusted Part

○ Network
○ Storage

● Assumes Secure Network Protocol





State Confidentiality
● Having Trusted Storage Is Nice
● Airbox gets an Enclave Specific Sealing Key that Encrypts
● The Data can Only Be Accessed in the Enclave



EF Implementation
● Aggregation
● Buffering
● Caching









Airbox Deployment
● Mobile Networks
● Enterprise


